Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Language

Available Online

Related Countries

Available Online

7 result(s) found.

Sort by

You searched for

Maximising conservation impact by prioritising islands for biosecurity
Available Online

Bambini, L.

,

Dawson, J.

,

Havery, S.

,

John, L.

,

Oppel, S.

,

Radford, E.

,

Varnham, K.

2019
Invasive alien species are one of the primary threats to native biodiversity on islands worldwide, and their expansion continues due to global trade and travel. Preventing the arrival and establishment of highly successful invasive species through rigorous biosecurity is known to be more economic than the removal of these species once they have established. However, many islands around the world lack biosecurity regulations or practical measures and establishing biosecurity will require social and financial investments. Guiding these investments towards islands where native biodiversity is at highest risk from potential invasions is of strategic importance to maximise conservation benefit with limited resources. Here we implement an established prioritisation approach, previously used to identify which islands will have the greatest conservation gains from the eradication of invasive species, to identify which islands would benefit the most from establishing or improving biosecurity. We demonstrate this approach for 318 islands in the Caribbean UK Overseas Territories and Bermuda where we considered all threatened native terrestrial vertebrates that are vulnerable to the most harmful invasive vertebrates (black and brown rats, cats, small Indian mongoose, green iguana). The approach calculates the increase in conservation threat score resulting from anticipated negative effects of potential invaders on native biodiversity, and highlighted Sombrero (Anguilla) and Cayman Brac (Cayman Islands) as important islands where threatened reptile species would likely be eliminated if rats, feral cats or mongoose invaded. Feasibility and cost implications should now be investigated more closely on the highlighted islands. The prioritisation presented here can be expanded to more islands and more invasive/native taxa (herbivores, plants and invertebrates), but requires a classification of the severity of potential impacts between invasive and native species for which currently little information exists. Besides highlighting opportunities for biosecurity, this approach also highlights where knowledge gaps about population sizes of and threats to reptiles with restricted ranges exist.
Scaling down (cliffs) to meet the challenge: the Shiants’ black rat eradication
Biodiversity Conservation, BRB
Available Online

Bambini, L.

,

Bell, E.

,

Campbell, G.

,

Churchyard, T.

,

Douse, A.

,

Floyd, K.

,

Ibbotson, J.

,

Main, C.E.

,

Nicolson, T.

,

Reid, R.

,

Taylor, P.R.

,

Tayton, J.

,

Varnham, K.

,

Whittington, W.

2019
A successful ground-based eradication of black rats (Rattus rattus) was undertaken on the remote, uninhabited Shiant Isles of north-west Scotland over winter (14 October–28 March) 2015–16. The rat eradication was carried out as part of the Shiants Seabird Recovery Project, which aims to secure long-term breeding habitat for protected seabirds and to attract European storm petrels and Manx shearwaters to nest on the Shiants. Throughout the eradication operation, teams were stationed on two of the three main Shiant islands (Eilean an Tighe, Eilean Mhuire), with access to the third (Garbh Eilean) via a boulder causeway from Eilean an Tighe. Bait (Contrac® blocks containing the anticoagulant bromadiolone 0.005% w/w), was deployed in a grid of 1,183 bait stations covering all areas of the islands and sea stacks. Bait stations were set 50 m apart, with intervals reduced to 25 m in coastal areas of predicted high rat density. Difficult areas were accessed by boat and cliff s of ~120 m in height were accessed by abseiling down ropes made safe using either bolted anchors or ground stakes. The team of staff and volunteers worked through difficult conditions, deploying bait and monitoring intensively for any surviving rats using a combination of tools. The islands were declared rat free in March 2018. This ambitious and challenging project has greatly enhanced UK capacity in rodent eradications for the purposes of conservation.
Long term rodent control in Rdum tal-Madonna yelkouan shearwater colony
Biodiversity Conservation, BRB
Available Online

Cabello, J.S. Santiago

,

Lago, P.

,

Varnham, K.

2019
Rodent predation on eggs and chicks is one of the main threats to procellariiform species in the Mediterranean, where the black rat (Rattus rattus) and brown rat (R. norvegicus) have been present on many islands for centuries. The yelkouan shearwater (Puffinus yelkouan) is an endemic Mediterranean seabird species classified as vulnerable. Malta holds up to 10% of the global population; the largest colony, Rdum tal-Madonna (RM), protected as a Natura 2000 site, hosts around 500 breeding pairs. This colony has been monitored since its discovery in 1969. A very low reproductive success due to rat predation was noticed in the late 1990s to early 2000s. In 2007 a seasonal rodent control programme was established during the breeding season of yelkouan shearwater to reduce rat predation on eggs and chicks. Rodent control took place between 2007 and 2010 and was reviewed and continued from 2012 to 2017. Breeding success since 2007 has been higher than 80%. In two other colonies with rat presence and where rodent control did not take place, the breeding success in 2016 and 2017 was substantially lower than in the colony with the rodent control programme. The European storm-petrel (Hydrobates pelagicus melitensis) only breeds in rat-free areas like remote sea caves or islets around the Maltese islands. In 2014, the first breeding attempt by European storm-petrel was recorded on the Maltese mainland at RM with a chick fledging successfully for the first time in 2016. The ongoing LIFE Arcipelagu Garnija project is assessing rat predation in all Maltese yelkouan shearwater colonies in order to establish predator control in the most important yelkouan shearwater breeding sites in 2018.
The eradication of black rats (Rattus rattus) from Dog Island, Anguilla, using ground-based techniques
Biodiversity Conservation, BRB
Available Online

Bell, E.

,

Connor, R.

,

Daltry, J.

,

Mukhida, F.

,

Varnham, K.

2019
Rat eradication techniques developed in New Zealand are a proven method for removing invasive rodents from islands worldwide. This technology moved rapidly from ground-based bait station operations to aerial application of rodenticides. Rat eradications on tropical islands using similar methods, have not always been as successful as those in temperate regions. As most previous eradications in the Caribbean have been on islands smaller than 50 ha, the eradication of black rats (Rattus rattus) from 207 ha Dog Island was a significant increase in size. Reptile and seabird populations on Dog Island had been in decline for a number of years and black rats were identified as the most likely factor. Following the feasibility study in 2007, the Dog Island Recovery Project was launched in 2011. This was a multiple-year project incorporating a ground-based eradication with establishment of biosecurity procedures to prevent reinvasion, alongside long-term monitoring of native species. Bait stations with cereal-based wax blocks containing brodifacoum at 0.005% w/w were established on a 30–50 m grid over the island. Interference with bait stations by non-target invertebrates, particularly crabs, was high and bait stations required moving or elevating to avoid this. However, there was no evidence of any non-target animals being killed or injured by the bait. Eradication success was confirmed in 2014.
Quantification and magnitude of losses and damages resulting from the impacts of climate change: modelling the transformational impacts and costs of sea level rise in the Caribbean
Climate Change Resilience
Available Online

Simpson, M.C...[et al.]

2010
The inextricable links between climate change and sustainable development have been increasingly recognised over the past decade. In 2007, the Intergovernmental Panel on Climate Change (IPCC)1 concluded with very high confidence that climate change would impede the ability of many nations to achieve sustainable development by mid-century and become a security risk that would steadily intensify, particularly under greater warming scenarios. Article 4.8 of the United Nations Framework Convention on Climate Change (UNFCCC) lists several groups of countries that merit particular consideration for assistance to adapt to climate change “especially: (a) small island countries, (b) countries with low-lying coastal areas, c) countries with areas prone to natural disasters.” Small Island Developing States (SIDS) have characteristics which make them particularly vulnerable to the effects of climate change, sea level rise (SLR) and extreme events, including: relative isolation, small land masses, concentrations of population and infrastructure in coastal areas, limited economic base and dependency on natural resources, combined with limited financial, technical and institutional capacity for adaptation.2
An overview of modeling climate change : impacts in the Caribbean region with contribution from the Pacific Islands, United Nations Development Programme (UNDP), Barbados, West Indies
Climate Change Resilience, Biodiversity Conservation
Available Online

Simpson, M.C...[et al.]

2009
The nations of CARICOM16 in the Caribbean together with Pacific island countries contribute less than 1% to global greenhouse gas (GHG) emissions (approx. 0.33%17 and 0.03%18 respectively), yet these countries are expected to be among the earliest and most impacted by climate change in the coming decades and are least able to adapt to climate change impacts. These nations’ relative isolation, small land masses, their concentrations of population and infrastructure in coastal areas, limited economic base and dependency on natural resources, combined with limited financial, technical and institutional capacity all exacerbates their vulnerability to extreme events and climate change impacts. Stabilising global GHG emissions and obtaining greater support for adaptation strategies are fundamental priorities for the Caribbean Basin and Pacific island countries. CARICOM leaders recently unveiled their collective position that global warming should be held to no more than 1.5°C19 and continue to develop a Climate Change Strategic Plan. The Pacific island countries have expressed their priorities for addressing climate change regionally through the Pacific Leaders’ Call to Action on Climate Change20 and the Pacific Islands Framework for Action on Climate Change 2006-2015.21